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On The Calculating Models of Permanent Magnets /86

Sun YushiW

(Nanjing Aeronautical Institute)

[Abstract] Two improvements were proposed for two calculating

models for permanent magnets (the scalar potential model and

the vector potential model) in this paper. Volumetric density -

was replaced by an appropriate hypothetical surface density

of magnetic monopole (or surface bound current density) which

did not vary with the operating point. The definition of mag-

netic reluctivity was correspondingly modified in the vector

potential model to simplify the calculation and computer pro-

gram. The improved models have been proven through computa-

tion and experiments.

I. Introduction

The widely used calculating models for permanent magnets

in engineering include the scalar potential model(11 (Model I

hereafter) and the vector potential model (1,21 (Model II

hereafter).

According to Model I, a permanent magnet is considered to be

comprised of distributed hypothetic magnetic monopoles (the

volumetric magnetic monopole density is Pm0) and various

anistropic magnetic conductors. Therefore, a permanent mag-

ndtic field is expressed by the following quasi-Poisson

equation. divugradU = -Pm0 (1)

and
Pm0 = -U0divM0 (2)

where U is the scalar magnetic potential, wo is the magnetic

permitivity in vacuum, and M0 is the magnetization vector in

the permanent magnetic when the magnetic field strength H is

zero.

Sreceived in October 1980, revised in December 1981
Sun Yushi (Nanjing Aeronautical Institute)
For ease of expression, rectangular coordinates were used
throughout this work. It was also assumed that the original
permament magnet and magnetizing directions were along the
Z-axis.
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The definitions of B and B are shown in Figure 1. u is

the magnetic permitivity matrix of the permanent magnet:

7 :Z

8. 3.1.

H.

t oa. a,. . -agnet ctivity,I 8

H. ' H.,. H,. H.. H.
(H.,,,J cd, ,H.i IH. ;e If)

Figure 1. Geometric Significance of Several Magnetic Conduc-
tivity (or Magnetic Reluctivity)

a. operating point on demagnetization line
(ip= 1/vp);

b. operating point on restoration line (P = 1/vp);
p p

c. operating point perpendicular to magnetizing
direction (Pq= 1/Vq );

d. linear conditionvHP p= VP (q ( Vq

e. VHp non-linear condition (vHq);

f. vHp in calculating example 2.

2



/87

F' . 0 O
0! 00 0 (B)L0 0 uJ

Furthermore
-. (B..-B,.)/. H,(3)

. -(B.-B..)/H. (4)

According to Model II, a permanent magnet is considered to

be comprised of bound currents (the volumetric current density

is Jmo ) and various anisotropic magnetic conductors. There-

fore, a permanent magnetic field (when a macroscopic current

density J is present) satisfies the following equation

rot(vrotA) .J.,+j (5)

J."c -mrot(.M,) (6)

where A is the vector magnetic potential and v is the apparent

magnetic reluctivity matrix, and

C , r ~ m.

0c 0 .

(C)

In the two models mentioned above, or v q cannot be

found from experimental data. Furthermore, their selection
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is not consistent. Frequently, a certain parameter in the

magnetization direction of the permanent magnet is made to

be
The author made the following modifications through

supplementing derivation and reorganization of equations (1)

and (2). The expressions for surface monopole density and

bound surface current were supplemented. In Model II, the

bound volumetric current could be avoided in ordinary conditions

through an appropriate modification of magnetic reluctivity.

Furthermore, bound surface current was made to be independent of

the non-linear coefficient matrix to simplify the calculating

process. In addition, objections were raised against the

determination of magnetic permitivity v q (or magnetic reluc-

tivity) perpendicular to the direction of magnetization in the

original model. It was pointed out that p must be obtainedq
experimentally.

II. Modification of Model II

The characteristic equations (3) and (4) for Figure 1

(a,b,c) can be expressed by the following matrix equation:

H~v(B °M,)(7)

By taking the curl on both sides of eq. (7), we got equations

(5) and (6). On this basis, the boundary conditions of the

medium with macroscopic surface current were compared to those

without such current(surface bound current density is considered

as macroscopic surface current density in Model II). An ex-

pression for the surface bound current density jmo could be

derived from the tangential component of H.

.=,- A,.vM.) Xn(8)

where n is a unit vector in the normal direction along the

surface of the permanent magnet. From equations (6) and (8)

one can see that Jmo and Jmo are both directly related to the

vector u (uM0).
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If Po (vM0 ) is a constant, then Jmo is always zero and jmo
is a constant. However, v usually varies with the operating

point for a permanent magnet. Therefore, p0 (vM0) cannot be

a constant. Hence, in Model II which is expressed by equa-
tions (5), (6) and (8). It is inavoidable to have Jm0 present

and jmO varying with the operating 
point.

There were enough reasons to express the characteristics

of a permanent magnet (see Figure 1 (d, e)] by another matrix

equation i.e.,
H=vB-H.. (9)

where vH is the equivalent magnetic reluctivity matrix of the

permanent magnet. Furthermore,

V 0 0
0 VM q 0

L 0 0 vA,

V ( H , -H .) i 'B e ( 1 0 )

Hdis the equivalent Voercivity vector and

He=- -HIS (D)

L -He,

Obviously, equation (9) is equivalent to (7). Furthermore,

under a linear condition, v -v and H0 = 0(vM0 ). After

treating equation (7) with the same treatment as for equation

4 This conclusion is applicable to a permanent magnet magnet-
ized in the z direction and along a radial direction.
However, it is not suited for circumferential magnetization.
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(9), the overall expressions for the improved Model II were:

J . . c : H ( 1 1 )

From the magnetization direction it is possible to determine

that Jm1 is zero in most cases (such as magnetizing along z-

axis or radially). It is a constant vector only when it is

magnetized circumferentially. However, Jm!l is invariantly a

constant vector.

From the equivalence of mathematical expressions, the

selection of H0p and H is arbitrary, in principle. However,Op Oq
whether the choice is appropriate will affect the converging

rate of the computation. For example, in example 2 in this

paper, when the permanent magnet is samarium-praseodymium-

cobalt [its characteristic is shown in Figure 1 (f)], the op-

erating region of the permanent magnetic is mainly in the

linear portion of the curve. Therefore, the fluctuation of

V Hp can be minimized in iterations by choosing HOp at the

intercept of the extension of the linear section of the char-

acteristic curve with the horizontal coordinate obtaining the

fastest convergence.

Ill. Supplement to Model I

From equation (7), the boundary conditions of the media

with a hypothetic surface magnetic monopole density were com-

pared to those without it. The expression for the hypothetical

surface magnetic monopole density on a permanent magnet could

be derived by using the normal component of B:

a.==-,M .. (12)

From equation (2) and (12) one can see that both amO and pmO

are unrelated to v. Therefore, when M0 is a constant, pmo in

most cases is invariantly zero. It is a constant only when /88

the magnetization is along a radial direction Z.am 0 , however,
is always a constant. This shows that in most cases only the
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effect of surface magnetic monopole must be considered. Volu-

metric magnetic monopole does not have to be taken into account.

IV. Magnetic Permitivity in Perpendicular Direction

The author conducted experiments on two batches of speci-

mens made primarily of AlNiCo-5 and the typical data and

curves are shown in Table 1 and Figure 2. The experimental

results explained the following three situations. pq is an

independent parameter different from parameters such as p rec'

Kr, and p which are determined by the magnetization direction.

Within the range of Hq < 0.5BHC , p q is nearly a constant. When

Hq is not large, the hysteresis of the B q-Hq curve is very

small and M q can approximately be considered as zero for a

permanent magnet. Pq is not apparently related to the magnetic

state in the magnetization condition. Therefore, Pq should be

obtained experimentally.

Table 1. Average Values of Important Parameters of the First
Batch Samples (Seven) in Magnetization and Perpendi-
cular Directions

i.298 4.84 10' 4.76 3.87
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Table 2. Typical B -Hq Characteristic Curve of a AlNiCo-5

Specimen (reproduced according to the curve measured)

• 4.3 li!S

e~.Qs'e~a

,F.

;.MW
i . ,.,tOA rl

1. scale MB = 0.15T/div. MH = 4.07 x 104 A/m/dov.

V. Experimental Proof

Example 1. A square cross-section permanent magnetic bar

was used to prove the expression for surface magnetic monopole

in Model I. Furthermore, the calculated curve of B and theY
measured points are shown in Figure 3.

The finite difference method was used in theoretical

calculation. A coarse computation was carried out in a

relatively large area (nodal points 27 x 27 x 26 = 18954).

Then, a fine calculation was performed in a correspondingly

reduced area (nodal points 26 x 26 x 25 = 16900). The

demagnetization and Pq used in the computation were all

8



actually measured numerical values.

Pm

19 2

,, /-2 -ig ~ - .. mm

lu 40 .00 V M )

Figure 3. Calculated Curves and Distribution of Measured
Points (B ) in Example 1.

The measuring instrument was a Hall effect gaussmeter. From
Figure 3 one can see that the theory coincides with practice.

Example2. A permanent magnetic ring (made of YX-30) in the
radjal direction was used to verify the improved Model II (see
Figure 4). For ease of comparison, calculated results obtained

based on Model I are also given in Figure 4 (the finite differ-

ence method was used for Model I with 95 x 34 = 3230 nodal

points).
Both the finite difference method and the finite element

method were used in the verification process (the grid division
of the finite difference method was the same as that in Model

I, and the nodal points were 164 for the finite element method).

The results are basically in agreement with those in Model I.
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In addition, the permanent magnetic ring was used to

verify the accelerated convergence effect of the improved

Model II. The permanent magnet shows a non-linear character

at below 0.7T. The selection of HOp and VHp is shown in

Figure 1 (f). The original and improved models were used to

calculate the potential, and the under relaxation iteration

method was used to correct the non-linear coefficients v and

Hp*
factors/are listed in Table 2. On can see that the converging

rate is greatly improved after Model II was improved.

/89

fo5iT)

O.5. ,'

U.

0 .66

Ti

Figure 4. Comparison of Results Obtained Using Finite Differ-
ence Method with Model II to Model I (BR portion)

1. improved Model II 2. Model I
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Table 2. Comparison of Convergence Under Various W

mr,

1 1.0 l o 0 A.3 0.15 0.1

.3. '
. t

4G 7 7
i ' ' '  " i 42

1. number iteration
2. model
3'. original Model II
4. modified Model II
5. non-convergence
6. non-convergence
7. non-convergence
8. non-convergence
9. (not calculated)
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